tl;dr: Pointcheval-Sanders (PS) is the coolest most versatile signature scheme I know of!
I love PS signatures1.
This is an early draft on how they work.
For further details, I will refer you to some decentralized thoughts we had on PS2.
Related work
CL, BBS+
Preliminaries
PS requires pairing-friendly groups $(\Gr_1,\Gr_2,\Gr_T)$ of Type III (important!): there should not be any homomorphism from $\Gr_2$ back to $\Gr_1$.
Let $p$ denote the prime order of these groups.
Let $(g,\tg)$ denote the generators of $\Gr_1$ and $\Gr_2$, respectively.
Pedersen vector commitments
Define re-randomization via $\pedRerand$: $\cm’\gets \cm\cdot h^{\Delta{r}}$. Probably move to its own cryptomat page.
The PS signature scheme
Algorithms
$\mathsf{PS}$.$\mathsf{KeyGen}(1^\lambda) \rightarrow (\sk, \pk)$:
- $(\x,\y_1,\ldots,\y_\ell)\randget\Zp^{\ell+1}$
- $(\tX,\tY_1,\ldots,\tY_\ell) \bydef (\tg^\x, \tg^{\y_1},\ldots,\tg^{\y_\ell})$
- $\sk\gets (\x,\y_1,\ldots,\y_\ell)$
- $\pk\gets (\tX, \tY_1, \ldots, \tY_\ell)$
$\mathsf{PS}$.$\mathsf{Sign}(\vec{m}\bydef[m_1,\ldots,m_\ell], \sk) \rightarrow \sigma$:
- $u\randget \Zp$
- $h\gets g_1^u$
- $(\x,\y_1,\ldots,\y_\ell)\parse\sk$
- $\sigma\gets \left(h, h^{\x + \sum_{i\in[\ell]} m_i \y_i}\right)$
$\mathsf{PS}$.$\mathsf{Verify}(\vec{m}, \pk, \sigma) \rightarrow \{0,1\}$:
- $(\tX,\tY_1,\ldots,\tY_\ell)\parse\pk$
- $(\sigma_1,\sigma_2)\parse\sigma$
- assert $e(\sigma_1, \tX) e\left(\sigma_1, \prod_{i\in[\ell]} \tY_i^{m_i}\right) = e(\sigma_2, \tg) $
$\mathsf{PS}$.$\mathsf{Rerand}(\sigma) \rightarrow \sigma’$
- $(\sigma_1,\sigma_2)\parse\sigma$
- $t\randget \Zp$
- $\sigma’ \gets (\sigma_1^t, \sigma_2^t)$
Explain that this is better than CL signatures, which had three group elements. Explain that a PoK of a signature has to be used with this, since the actual signature always leaks the message by virtue of the verification algorithm. Explain that this can be handled by verifying over a re-randomized commitment3.
References
For cited works, see below 👇👇
-
Short Randomizable Signatures, by Pointcheval, David and Sanders, Olivier, in CT-RSA 2016, 2016 ↩
-
Pairing-based Anonymous Credentials and the Power of Re-randomization, by Ittai Abraham and Alin Tomescu ↩
-
UTT: Decentralized Ecash with Accountable Privacy, by Alin Tomescu and Adithya Bhat and Benny Applebaum and Ittai Abraham and Guy Gueta and Benny Pinkas and Avishay Yanai, in Cryptology ePrint Archive, Paper 2022/452, 2022, [URL] ↩